
INTELLIGENT ADDRESSING
AND ROUTING OF DATA VIA

THE RTI FILTER
CONSTRUCTS

Larry F. Mellon
Science Applications International

Corporation

KEYWORDS
Interest Management, Multicast, Filtering, HLA

ABSTRACT

The HLA RTI is in part intended to increase the
scalability of an exercise by replacing the DIS
broadcast paradigm with one of optimal data delivery
to the minimal subset of simulation hosts as is
possible. The basic mechanism provided, class-based
subscription, supports only a limited increase in
scale. A secondary mechanism, filtering, is defined to
provide additional scaling support. An API to a
filtering technique referred to as filter space is
proposed for inclusion into the baseline RTI API
definition. This paper first defines the key scaling
issues that affect the filtering problem, the classes of
filtering techniques proposed to date within the AMG,
and how filtering may be used in optimizing the data
flow between simulation hosts. An analysis of the
filter space API’s support for other filtering
techniques is given, and how differing routing
algorithms may be employed.

INTRODUCTION

 A new standard for DoD simulation programs
has been proposed by DMSO and the Architecture
Management Group (AMG). The High-Level
Architecture (HLA) is intended to foster
interoperability and standardized infrastructure where
possible across all simulation programs, with
especial focus given to distributed simulations.

The HLA defines a single logical component to
support execution, object, and time management, as
well as synchronized data exchanges between
simulations (federates). The draft specification of this
Run-Time Infrastructure (RTI) component provides a
robust definition of all management services, but has
not yet fully addressed how the overall system
overhead scales in proportion to the number of
entities in the exercise. Further scalability issues
within the RTI must be addressed in terms of the
number of platforms executing a given federation and
the data exchange rates between federates.

This paper first defines the basic scaling issues
within distributed simulation which are related to
known data filtering techniques. The basic classes of
filtering techniques under discussion in the AMG are
introduced, and implementation options are
summarized. The proposed scaling mechanism of the
RTI (filter space) is then analyzed in terms of both
scalability in and of itself, as well as the suitability
of the filter space API for supporting other classes of
filtering mechanisms.

SCALABILITY SUPPORT VIA THE RTI

The primary mechanism for scalability in the
RTI is object subscription, which allows federates to
specify what classes of data are required at their
individual machine hosts. This knowledge allows the
RTI to improve the inter-machine transmission
protocols from non-scaling broadcast protocols (ala
DIS) to various multicast transmission mechanisms
with better scaling characteristics.

A secondary mechanism, referred to as filtering,
is defined in concept but not implementation.i RTI
filters allow federates to more tightly specify what
data is required at their machine hosts based on the
current value of individual attributes. While this
concept certainly allows for a scaleable system, the
actual implementation of the RTI filters (and the
intrinsic scalability of the exercise) will have a strong
impact on the performance of a federation. Other
mechanisms to support scalability, such as DIS dead
reckoning algorithms and variable fidelity data are not
directly supported by the RTI, but must rather be
addressed by the federation. The actual
implementation of such federate-level techniques and

i A proposed implementation known as in

general as filter space is under investigation by
DMSO. An API called routing spaces has been
added to the RTI specification, but was not available
in time for detailed review. No significant functional
changes are expected to the filter space concept from
the new API.

their interaction with RTI filtering concepts and
implementations will also greatly affect overall
system scalability.

Filter Definition

It is assumed that large federations with high
performance requirements must perform work beyond
that of simple class-based object subscription to
reduce the amount of incoming data at each federate.
This concept is broadly referred to as filtering, and is
now specified in the RTI draft specification under
Data Distribution Management. As defined in
[Mellon96], filtering may exist both within federates
and within the RTI, where RTI-level filters are used
to reduce the packets arriving at any given federate
host, and federate-specific filters are used to further
reduce the data set before detailed processing.

Filter space has been proposed as a mechanism
within the RTI to implement filtering for a broad
range of federations. Further, it is proposed as an
interface and implementation capable of supporting
other filtering techniques by federations whose data
sharing characteristics may be better exploited by a
custom filtering scheme.

SCALABILITY ISSUES AFFECTING
FILTERING

As outlined above, a federation’s scalability may
be broadly defined as the ratio by which system
overhead and model computation increase as the
number of entities in the system increases. If the
system overhead increases at an unacceptable rateii as
the number of entities increases, there is an upper
bound on the number of entities that may be
supported in an exercise. Similarly, if the amount of
model computation increases at too high a rate as the
number of entities simulated increases, an upper-
bound exists.

Secondary scaling issues relate to the number of
hosts in the federation and the volume of data
exchanges between federations (i.e. is the
implementation of the RTI scaleable). The following
terms define the key scalability issues for a federation
and their relationship to filtering. Note that this
analysis does not factor in the effects on scalability of
differing time management schemes, which may have
a substantial impact on scalability and performance.
Such effects are expected to be captured in the
DMSO-sponsored white paper [Steinman96].

System Overhead

The primary system overhead for federations is
expected to be the sharing of entity state data across
large numbers of federate hosts. This is due to the
large cost of transmitting and receiving network
packets on current UNIX-based platforms, the number

ii The level of acceptability will vary across

federations. A geometric increase in overhead may be
acceptable if the federation is small, a linear increase
may be unacceptable if the federation is large

of entities and federate hosts in the system, and the
frequency at which some entity state data changes
occur. While the bandwidth of the underlying
network must also be taken into consideration,
previous experiments from the RITN project indicate
that bandwidth will not be the dominating factor
[Calvin95]. The majority of the proposed experiments
will evaluate the effectiveness of various techniques
in reducing the number of network accesses (both
transmission and reception) done by machine hosts.

RTI-level filters are expected to be a primary
technique in reducing system overhead due to network
I/O caused by entity state changes.

Intrinsic Scalability

Standard simulation theory states that as each
entity changes state, it must evaluate its new
potential interactions with the full remaining set of
entities in the simulation. Such an evaluation
technique scales poorly, as the number of evaluations
increases geometrically in proportion to the number
of entities. Thus the intrinsic scalability of the
system is considered to be low.

In practice, modelers will often optimize the
problem of entity interaction evaluations with entity-
specific knowledge, such as sensor type, predictable
motions patterns of entities, relative positioning of
entities, and similar techniques. By use of such
knowledge, the modeler may either sort all entity
state data for efficient evaluation (quad trees and
similar approaches), or evaluate entity interactions
with increasingly complex operations, where simple
operations are used to remove the majority of entities
from complex evaluations. Any technique which
reduces the number of entity interaction evaluations
required may be said to be increasing the intrinsic
scalability of the system. Note that many of the
common techniques employed are not suitable for use
in distributed systems, due to the centralized nature of
the algorithms.

In a distributed simulation, filtering via network
multicast is an excellent way of exploiting intrinsic
scalability. However, if the exercise exhibits poor
intrinsic scalability, no filtering mechanism will have
a significant impact on performance, as (by
definition) the majority of data must be routed to the
majority of hosts.

Given the large system overhead incurred by the
sharing of large volumes of entity state data in a
distributed system, the intrinsic scalability of any
given exercise will severely impact that exercise's
runtime performance, i.e. if the exercise design has
poor intrinsic scalability, the system overhead will
quickly exceed practical limits as the numbers of
entities increases.

Data Transmission Optimizations

After the set of entity interaction evaluations has
been reduced to the minimum set possible, some
number of theoretical data exchanges between entities
exists. A further technique may be used to increase
the intrinsic scalability of an exercise by minimizing

the actual number of network transmissions required
to support the theoretical data exchanges. This class
of optimizations is referred to as Data Transmission
Optimizations (DTOs).

A DTO is defined as any technique that is used to
optimize the network transmissions of shared state (or
public attributes) in a distributed simulation. DTOs
allow the federation designer to exploit the known
characteristics of FOM data and how it is used, and
thus are specified by each federation.

DTOs are not required for the exchange of model
data, nor are they used to communicate information
between models. They are used to only to
automatically minimize the network transmissions
required to keep the subset of federation shared state at
each host sufficiently up-to-date.

Examples Of DTO Functionality
Restricting the amount of shared state to be

distributed. Example: interest declaration (state
the minimum set of data required by each
simulation).
Organize data for efficient access. Example:

sectorization (divide the battlespace into geographic
sectors to help determine which objects are co-
located).

Describe characteristics of the data itself.
Example: predictive contracts (Dead Reckoning,
scripts, etc, which predict how a data item changes
over time).

Describe how data is used. Example: variable
resolution (the amount of uncertainty an object is
able to tolerate in a data item's value).

These improve the theoretical minimal data flow
requirements for a federation. By exploiting the data
requirements of the federates, the actual number of
transmissions required to keep the system consistent
is minimized, thus lowering the load on filters.

Locality of Reference

Another technique used to optimize the data flow
of an exercise is locality of reference. If two entities
are required to examine each other's state on a regular
basis, and the entities are being modeled on machine
hosts at opposite ends of the WAN, the system
overhead incurred is large. If the entities are being
modeled on machine hosts on the same LAN, the
system overhead is lower. Correspondingly, if the
entities are being modeled on the same machine host,
system overhead is minimized. Mapping entities to
hosts to exploit locality of reference will impose a
lower load on the infrastructure, dependent on the
infrastructure ‘s implementation approach.

Locality of reference is controlled by the initial
allocation of modeled entities to machine hosts in
the overall system, and later optimized by the
dynamic migration of entities as they change state
over time, and thus change potential localities of
reference.

Note that locality of reference is a subset of the
full load balancing problem: equal allocation of
workload and balancing of CPU/memory resources are
also important to scalability. However, filtering is

most affected by locality of reference, in that filters
may be used to ‘trap’ local data from escaping
localized areas of the system. See also: hierarchical
architectures, below.

Hierarchical Architectures

A high-level architecture defines major system
components in terms of their basic functionality,
classes of interfaces, and the connectivity between
components. A physical system architecture is
defined as the mapping of high-level components to
physical instances of hardware and/or software, and
the connectivity between the physical components.
Note that several different physical architectures may
be used to implement the same conceptual
architecture.

A hierarchical architecture in this context is used
to refer to physical architectures which have similar
elements grouped together to share resources and/or to
lower system overhead. Such architectures tend to
have good scaling behaviour, as no one component of
the architecture must deal with large numbers of
clients. For example, an architecture with 10,000
clients to a given server component creates a potential
bottleneck in the system. A hierarchical architecture
will break that central component into 10 individual
components, each with 1000 clients: leaving each
small server with less work to perform than the
single large server with 10,000 clients. If required,
the actions of the 10 servers are then coordinated to
mimic the behaviour of a single server.

Examples of hierarchical physical architectures
include shared caching mechanisms in the parallel-
processing hardware community, where more than
one processor shares a single cache [Chaiken91].
Such systems are designed to exploit locality of
reference, where many processes share data.
Efficiency gains are realized by two means:
• lower system overhead in bringing required data

to the clients (a shared data item is brought to the
local cache only once, not once per reading
client).

• lower system overhead overall (data shared only
by local clients does not leave the cache, and
thus does not consume inter-cache resources nor
interfere with other caches and/or clients of other
caches by filling remote caches with non-used
data).
It is important to note that such hierarchical

architectures consume additional overhead to maintain
and synchronize the levels within the hierarchy.
However, the gain in scalability by removing
bottlenecks is expected to exceed the additional cost
incurred. Also note the dependence of many such
systems on locality of reference. The overall system
must be carefully engineered to increase locality.

With specific reference to distributed simulations,
three natural hierarchical levels seem to exist:
• local federate host
• local area network
• wide area network.

A number of proposals exist in the community
to exploit these levels with hierarchical services

and/or shared caches. For example, a federate host
may wish to cache shared data referred to by its local
clients. A LAN may have a cache of data
representing the set of required data for all local
federate hosts. Across the entire federation, a shared
conceptual service may be represented by a number
of self-coordinated components, one per LAN.
Another potential class of hierarchical optimization is
'clustering', where entities who tend to exchange data
only with each other are executed on the same LAN,
thus keeping non-global data

1) off the WAN
2) off of other LANs
3) off of other hosts
One potential use of filters is to restrict passage

of data at each hierarchical point (i.e. exploit locality
of reference).

Achieved Scalability

While intrinsic scalability gives the measure of
how well the model may scale, achieved scalability
gives the measure of how well the exercise
infrastructure does scale for a given federation’s level
of intrinsic scalability. In other words, intrinsic
scalability is the measure of how much data is
required to be shared at each host, and achieved
scalability is the measure of how efficient the
infrastructure was in sharing said data.

Using again a standard DIS exercise as an
example, techniques such as compression and packet-
bundling are used to increase the efficiency of the
infrastructure, and thus improve the system’s achieved
scalability.

Achieved scalability is used to determine if the
amount of system overhead a given infrastructure
implementation consumes is excessive or close to
optimal. Two baselines are of use in measuring the
achieved scalability: standard DIS, and a theoretical
best case implementation, which has zero cost in
exchanging data. The use of DIS is an obvious
baseline, due to the broad use cases which exist, and
its use of a broadcast protocol. The theoretical best
case is used to establish an upper bound on an
implementation’s efficiency. A good measure of
performance is how close to optimal efficiency did a
given implementation achieve, and thus may be used
to measure the effectiveness (and cost) of differing
filter implementations.

Flow Control

Two forms of flow control may exist in interest-
managed systems: source quenching and interest
quenching. Source quenching in traditional network
load management systems involves the detection of
network overload, followed by a network signal to
hosts that are producing the largest volumes of data
(or have exceeded their provisioning requests). The
hosts are then responsible for 'backing off' their data
output rate, either unilaterally by low-level protocols,
or via application-level decisions. Interest quenching
is very similar: in network overload conditions, hosts
that are consuming the largest volumes of data are

signaled to 'back off' by lowering the extent of their
interest statements (i.e. reducing the scope of data
requested by their filters).

Scalability Summary

Using a standard DIS exercise as a basis for
comparison (where all entity state data is shared at all
hosts), a maximum of several hundred entities may be
realistically modeled. This maximum must be
increased by one to two orders of magnitude for the
RTI to be considered a success. Clearly, a careful
analysis of the federations models and data exchange
patterns must be performed to ensure a sufficiently
high level of intrinsic scalability before any filtering
technique may succeed. Standard examples of
pathological cases include: wide-area viewers with
metre-level resolution, and all entities within sensor
range of all other entities.

As the issues listed above illustrate, efficient
filtering techniques are a necessary but not sufficient
condition for a scaleable federation. To summarize, a
scaleable federation must:

• Reduce the occurrence of entity interaction
evaluations to a minimum.

(maximize intrinsic scalability)
• Implement the models and the infrastructure in a

scaleable fashion .
 (evenly distribute workload)
• Optimize the theoretical data flows between

entities, via DTOs, load balancing, ...
 (minimize communication load)
• Implement transport mechanism (i.e. RTI and

filters) in an efficient, scaleable fashion.
(minimize communication cost)

AMG FILTERING BACKGROUND

The AMG created a filter working group to
further refine the notional filters specified in the early
RTI drafts. The notional filters were required to
execute locally to the calling federate's workstation
(due to the inclusion of local state information and
similar reasons). While this was considered adequate
for federations with small amounts of shared state, a
potential scaling problem was identified for
federations with certain classes of data.

Ideally, data that did not pass a federate's filter set
would not be sent to that federate, thus avoiding
unnecessary consumption of federate resources
servicing the network. In this context, the network
itself is used as a first-order filter to prevent irrelevant
data from arriving. However, the draft RTI
specification was only able to perform this function
in a limited manner. The basic difficulty was
identified as a data routing problem, where the RTI
lacked sufficient information to route attribute updates
to the minimum set of required hosts. For certain
federations, hosts were in danger of receiving far more
data than they actually required. The following
example was used.

Consider a federation with 10,000 platform-level
entities in an exercise: 5,000 tanks and 5,000 jeeps.
Each entity is represented by a single RTI-level
object, consisting of an (x,y) coordinate. Two object
classes are defined: 'tanks', and 'jeeps'.

With the then current RTI specification, any
given federate may only subscribe to a class of
objects, thus in the above example a federate may
only subscribe to

• jeeps AND tanks,
• ONLY jeeps,
• ONLY tanks.

To continue the example, if a federate is only
interested in "tanks within 10km of my_tank’s
current_position", a RTI filter may be defined to
check the (x,y) values of incoming tank objects
against the current (x,y) of "my_tank". Thus the RTI
will only deliver to the federate tank objects which
meet the filter. If only one tank fits the filter, then
only one tank is passed up to the federate.

However, a key scaling issue is how the RTI can
determine what tank objects meet the federate's filter.
In the above example, the RTI must conceptually
evaluate all 5,000 tank objects against the filter. As
the filter contains references to dynamically changing
data (the current positions of all remote tanks and the
current position of the subscribing tank), the RTI
must at the least evaluate each tank object against the
filter when any tank objects change in value (i.e. an
update_attribute is done). To do so, the RTI must
bring all changed tank objects to the filter for
evaluation. Note the initial condition of filters being
resident on the owning federate's host. The RTI may
filter out all jeep objects via the network, as the
federate subscribed only to tank objects. However, all
tank objects must be brought to the filter. Given that
there are 5,000 tanks in the example case, and a DIS-
like update rate of one per second, the RTI must bring
5,000 updates to the filter each second. At an
approximate CPU cost of 150 to 500 microseconds
per network access (as reported by the STOW SEID
and JPSD projects), the upper bounds cost of
maintaining our simple example filter is 500 usec *
5,000 = 2,500,000 usec / sec.

While the above numbers are approximate, they
clearly show the scaling problem: a federate's host
CPU is in danger of being swamped well above its
capacity simply supporting the RTI filter.

FILTER PROBLEM DEFINITION

As the above example shows, it is not sufficient
for the RTI filters to simply prevent unwanted data
from being processed by a federate -- if the federate's
host is receiving all data prior to the filter operation,
little savings are realized. For our purposes then,
filters must have two properties: first, they must
prevent unwanted data from reaching the federate, and
second, they must also prevent as much unwanted
data as possible from reaching the host of the federate.
The most straightforward mechanism to prevent
unwanted data from arriving at a federate's host is
simply not to send it to that host. To accomplish
this task, two operations must be performed:

• Addressing the Data: i.e. obtaining the minimal
list of federates requiring any given
update_attribute.

• Routing the Data: i.e. moving the data from
source to sink(s) with minimal cost to the
system.
Given that each federate has specified a set of

filters which describe what data does not meet its
needs, the potential exists to invert the filters and
determine what data needs to be routed to each federate
(i.e. addressing the data). Thus only data that will
pass each federate's filters will be routed to that
federate.

The translation of federate-defined filters into
identities of sources and sinks is conceptually a
simple task, however the distributed nature of the
problem complicates implementation choices
considerably. The primary difficulty is that filters are
defined by the sink and change over time, but the
routing of data must occur at the source. Thus within
the implementation the filtering mechanism must
have some synchronization technique (either static or
dynamic) between sources and (potential) destinations.

While the language used to specify filters must
first permit the translation process from filter into
routing-level information, a secondary consideration
is the ease of use by the federation developer. Filters
must be as simple as possible to define and modify,
while still providing sufficient information to be used
in the addressing process. It is postulated that many
different techniques to specify filters are possible,
each of which with differing interfaces, execution
costs and benefits to the underlying routing
mechanism.

ADDRESSING OF DATA

Addressing versus Routing

In a distributed system, filters may be categorized
as obtaining Addressing information, i.e. who needs
what subset of data items (one source per data item, N
sinks). Multicast groups may be categorized as the
 Routing mechanism, i.e. how to get data from source
to sink(s) with minimal cost. Overall costs to the
system includes both cost of Addressing and Routing
at each point in the system: source / network / sink.
Note the independence between Addressing and
Routing -- once addresses are obtained, more than one
routing method may be employed.

Type-based Addressing

As the basic RTI subscription mechanism only
understands static information (such as class and
attribute types), that is all the information available
for use in routing decisions. For example, one
federate subscribes to 'tank' data, another federate
publishes 'tank' data, and the RTI routes the 'tank'
data from source to destination. But note that no
 value information is used -- routing is done strictly
on the type of the data. While this will result in

sufficient routing optimizations for many federations,
it clearly does not scale well enough for very large
federations.

The AMG filter working group agreed that
federations with large numbers of objects and high
performance requirements needed to be able to give
the RTI more information to use in the routing
decision. In the ideal case, only data which would
pass the federate-defined value-based filters would be
sent to that particular federate. This would greatly
improve the potential scalability of the RTI -- the
federate host in the above example would not receive
5,000 packets per second, but rather only the single
tank object which passed its filter.

Value-based addressing

Where the initial RTI spec only allowed for type-
based addressing, the RITN and JPSD projects
[Calvin95, Powell96] both chose a value-based
addressing approach. Data was addressed dependent on
what value it currently had, as well as what type .
This approach allows a federate host from getting
swamped with 'all tanks' data, as only 'tanks within
10km of current_position' are received by that
federate’s host.

The only difficulty with value-based addressing is
that it is heavily dependent on what the data means to
the federation as a whole, and to each federate in
particular. For example, what fields of bits represents
the 'position' concept, and what does 'near
my_current_position' mean? How fast do platforms
move? Does that affect how often the addresses
change? If they change too quickly, will the RTI
have trouble adapting the multicast groupings? More
analysis and implementation decisions must occur for
a value-based addressing scheme that for a class-based
scheme.

CLASSES OF ROUTING

Many types of routing exist overall -- we restrict
our analysis to the use of multicast in a distributed
simulation, where multicast is defined to be a single
transmission of a packet for reception by multiple
hosts. Note that two implementations of multicast
exist: the IP protocol (where hosts join a multicast
group for both transmission and reception), and ATM
point to multipoint (where a source sends to an
address consisting of multiple destinations). Each of
the routing techniques outlined below may be
implemented via either multicasting mechanism,
however the implementation cost and resulting
performance will vary. A detailed analysis of routing
techniques may be found in [Powell96B].

As an object comes down from the application to
the RTI, the RTI must have an algorithm to decide
how to put that data onto the appropriate multicast
group (i.e. route it). The RTI has only three basic
pieces of information it can base the multicast group
selection upon:

• The Source of the Data (which application or
entity or unit this object comes from).

• The Content of the Data (the values of the
attributes in the object, or information, like filter
specs, derived from the values of the attributes).

• The Destination of the Data (the list of all those
applications or hosts that have subscribed to this
piece of data and for which it is destined).
Thus any multicast scheme can be categorized as

one of:
• Source-based multicast.
• Data-based multicast.
• Destination-based multicast.
• Some combination of the above three.

As described in [Powell96], a number of differing
approaches may be taken to utilizing network
multicasting mechanisms within the filtering
problem. The three basic approaches are summarized
below. Note that the use of multicast groups (i.e.
routing) is primarily independent of the mechanism
used to determine the destination of data (i.e.
addressing). Various addressing mechanisms may be
used to make the routing decision for all classes of
multicast.

Source-Based Multicast

Multicast addresses are assigned based on the
 source of a data item, i.e. every Data Source transmits
its data on its own unique multicast group. Possible
interpretations of “Source” are:

• Object ID (each object gets its own MC Group)
• Unit ID (a unit is a group of objects or entities,

such as a platoon or company, each unit gets its
own MC Group)

• Host ID (each computer gets its own MC Group)
Subscribers join the appropriate group to receive

data.
Primary advantage: low numbers of multicast

groups are required.
Primary disadvantage: efficient mapping of source

to multicast group.

Data-Based Multicast

Multicast addresses are assigned based on the values
of the full set of data items. The first idea (and
most popular)used to date is geographic grids,
where each object is transmitted on the MC
group corresponding to the geographic region in
which the object (entity) exists. Other options
include the use of PDU (object) type, entity type,
altitude, marking, etc.
Subscribers join the appropriate group to receive

data.
Primary advantage: ease of implementation, no

background traffic.

Primary disadvantage: large numbers of multicast
groups are required for reasonable data
segmentation.

Destination-Based Multicast

Multicast addresses are assigned based on the
 consumers of a given data item. Example:

Mcast Group 1: host_A, host_B, host_C
Mcast Group 2: host_A, host_B
Mcast Group 3: host_B, host_C
Mcast Group 4: host_A, host_C

As each data item is updated, a Destination List
is produced (by any addressing scheme). MC groups
are used to route data.

Primary advantage: filtering may occur at the
source of data -- minimal loading on network,
optimal addressing results in minimal disturbance of
hosts.

Disadvantage: unacceptable number of MC
groups required: 2N -1, with N federates, to set up a
fully-connected mesh.iii

CLASSES OF FILTERING

Filtering can be achieved at three places in a
distributed system: data source, data destination, and
the network (or in general, the transport mechanism).

• Source Filtering: helps eliminate unwanted
traffic from getting onto the network and arriving at
destinations unwanted. Potential big payoff.

• Destination Filtering: provides the least
advantage to the overall system, since all three
elements (source, network, and destination) are
stressed to some extent, but is the most accurate
mechanism.

• Network Filtering: In a distributed system, the
primary mechanism for Network Filtering is the use
of multicast: i.e. routing data only to consuming
hosts.

All filtering techniques are used to produce a
destination list -- i.e. what hosts require any given
update_attribute, and what address will get it to them.
Many different multicast schemes may be used to
route the data, once the destination list is known.
Four major approaches have been proposed to allow
the inclusion of current-value information into the
RTI routing decisioniv. These are summarized below.

Categories

This scheme requires the federation to define a set
of filters that sub-divide the potential values of
attributes to be filtered on. Each filter defines a
category that an attribute’s current value falls within.
Default categories are assigned by the RTI, based on

iii Unless address caching schemes or hierarchical
architecture techniques are employed. Natural
hierarchy point for multicasting: LAN/WAN
boundary.

iv An interesting approach used in the NSS
design was discussed, but was not formally proposed.

the already known class/attribute type information
from the FOM.

The standard model for RTI interaction still
holds: the RTI is required to deliver only those
update_attributes that meet a federate's current
subscription list. If the federation defines its own set
of categories, individual federates subscribe to
categories of data, not to class/attribute sets. The
RTI interaction model does not change -- the RTI
now simply delivers update_attributes based on the
user-supplied categories.

To expand on our example federation, tank
objects now consist of two attributes: position and
status. Position remains an (x,y) coordinate, and
STATUS is a boolean variable: LIVE/DEAD.

Examples of categories for this federation depend
on what is deemed important. If there are few tanks
planned in the federation execution, then the default
assignment of categories by the RTI is sufficient. If
a federate is not interested in DEAD TANKS, then
the federation-defined categories would consist of:

category 1: type == TANK, status == LIVE
category 2: type == TANK, status == DEAD
category 3: type == TANK
Any given federate could then subscribe to one of

the three categories of data, and be assured that objects
which match the other two categories will not be
delivered to its host. Thus in the example 5,000 tank
scenario, if 2,000 of the tanks are dead, and federate_A
subscribed to category_1 data, 'only' 3,000
update_attributes are received.

To further improve performance, the federation
could extend the categories to:

c 1: type == TANK, status == L, pos.x <= 50
c 2: type == TANK, status == L, pos.x > 50
c 3: type == TANK, status == D
c 4: type == TANK
In this example, we assume a (x,y) battlespace

ranging from (0..100, 0..100). Via the above
categories, the federate has broken the battlespace into
two playboxes:

 (0..50, 0..100) and (51..100, 0..100)
If federate_A currently represented an entity at

position (10, 0) (i.e. the left playbox), it would then
subscribe to category_1 data. Thus in the example
5,000 tank scenario, if 2,000 of the tanks are dead,
and 1/2 of the remaining LIVE tanks are in the other
playbox, only 1,500 update_attributes are received by
federate_A.

The above example may be continued by further
sub-dividing the battlespace into smaller playboxes
(or sectors), or using further attributes of the objects.
The intent is to allow the federation to use federation-
specific knowledge of the data to break the set of
attribute values down into a finite set of categories.
Each federation may specify the amount of
categorization it feels is necessary to achieve its
performance goals: from simply using the default
class/attribute type categories created by the RTI, to a
full geographic sectorization scheme and discrete
value changes of key attributes.

Note the very specific knowledge used by the
federation's categorization scheme. The federation has
used the fact that the status attribute has only two

possible values, and that some federates never require
data about DEAD tanks. The federation has also used
the knowledge that the first attribute of the tank
object is used to denote position, and that federates
require different data to be delivered, based on the
current value of all object's position attribute.

Data Publication: When a federate changes a
value of an attribute, it then evaluates that attribute
against the set of categories. The federate then passes
the new value to RTI with the category number
which currently describes the attribute.

Data Subscription: Federates examine the list of
available categories, and subscribe to the categories
which describe data that they require. Federates may
change what categories they are subscribed to at any
time.

Multicast Optimization: multicast groups are
mapped one per category. This use of multicast is
considered data-based multicast, where the value of
transmitted data is used to determine what multicast
groups are transmitted to and received from.

Source-based Filtering

Source-based filtering describes a class of
addressing used by the JPSD system, as well as a
number of distributed database systems . In this
approach, the filters created by each federate are placed
at all potential sources of data in the distributed
system. As data is changed, it is run through the
filters on a simple pass/fail basis. Each filter also
contains the network address of the federate who
created the filter. Data is thus only routed to exactly
the set of federates who require it.

While on the surface a very appealing approach, a
number of implementation issues arise to do with
efficient distribution of filters and subsequent changes
to filters. While not inconsiderable, efficient
solutions to these problems are relatively known, and
entirely the responsibility of the federate, not the
RTI. The reader is referred to [Powell96], where an
8,000 to 10,000 DIS-entity exercise is detailed.
Further work on the scalability of this approach may
be found in the STOW runtime architecture
implementation notes (www.stow.com). Also note
the applicability of hierarchical improvements to the
basic source-based filtering approach. Other
improvements, such as unification of filters, ordered
comparisons, and limited distributed of filters are also
outlined in the STOW architecture documents.

Data Publication: When a federate changes a
value of an attribute, it then evaluates that attribute
against the local set of filters (created by remote
federates). If the new attribute value passes a filter,
the federate then transmits the new value to the list of
federates attached to that filter.

Data Subscription: Federates create a set of filters
which describe the types and values of attributes they
are interested in. These filters are sent to any federate
capable of producing such types of data.

Multicast Optimization: Each multicast group
consists of a list of federates to whom data of any
type or value is to be sent. For example, multicast
group 1 would consist of fed_A, fed_B, fed_C,

multicast group 2 would be fed_A, fed_B, group 3 ==
fed_A, fed_C, group 4 == fed_B, fed_C. This use of
multicast is considered destination-based multicast,
where the destination of the data is used to determine
what multicast groups are transmitted to and received
from.

Filter Space

Filter space is a novel approach to obtaining
sufficient information from the current value of data
items to make effective routing decisions without
specific knowledge of the data's type, value, or
meaning to the federation. This enables a filtering
mechanism to be built into the RTI that is capable of
supporting many different federations without
minimal coding required by the federation.

Filter space requires the federation to create a N-
dimensional space, each dimension corresponding to
an attribute to be used in the filtering decision. For
example, a filter spec might be created with five
dimensions: lat, long, height above ground, RCS,
and velocity. Each dimension is normalized (or set
with ranges now?).

Data Publication: When a federate changes a
value of an attribute associated with a filter spec, it
then evaluates where in filter space the five-attribute
data set (lat,long,HAG,RCS,vel) existsv. The federate
then publishes the new value via the RTI, with the
abstracted point in filter space that is associated with
the data set.

Data Subscription: Similar to the publisher,
potential subscribers create a N-dimensional filter
spec, and subscribe to an abstract region within that
filter space. When the RTI detects a data set being
published that falls within the declared region, it
brings the matching data to the subscribing federate.

Multicast Optimization: multicast groups are
mapped to 'cells' within filter space. All data sets
whose abstracted point in filter space falls within cell
1 are transmitted by the RTI on multicast group 1.
RTI Ambassadors whose local federate has a region of
declared interest within cell 1 will then join multicast
group 1 and receive relevant data for the federate.
This use of multicast is considered data-based
multicast, where the value of transmitted data is used
to determine what multicast groups are transmitted to
and received from. While the Filter Space API does
not exactly preclude a source- or destination-based
scheme underneath, it is weighted heavily towards a
data-based approach.

Synopsis

The synopsis approach requires each federate to
maintain a very approximate representation of all
attribute values it controls. This synopsis is then
distributed to all other federates in the system. Each
federate then examines it local copy of the global
synopsis to determine which attributes might be

v An optimization may be done, where the
federate used thresholds to determine if the attribute’s
location in filter space need be checked.

relevant. For any attributes that might be relevant,
the federate then requests that the RTI begin
delivering the exact values of that specified set of
attributes.

For example, the example federation above may
be expanded to include a low-resolution position
attribute. Thus the TANK object contains: position,
status, low_res_position. As in the category
example, LOW_RES_POSITION may simply be
left-playbox or right-playbox. An example federate
would have subscribed to the low_res_position of all
TANKS. Based on the (locally known) fact that local
tanks are in the left-playbox, the federate would then
subscribe to the high-resolution position of all tanks
whose low_res_position is equal to left-playbox.

Data Publication: Federates each maintain a
'synopsis' of the current set of attributes they produce.
The synopsis consists of low-resolution views of the
attributes. Synopsis updates are occasionally updated
to all other federates. When a federate changes a value
of an attribute, it sends an update of that attribute to
all federates who have subscribed to it (see below).

Data Subscription: Federates regularly examine
the low-resolution synopsis of available data. For
attributes that may be of interest, the federate
explicitly subscribes to the high-resolution version of
that attribute.

Multicast Optimization: either source or
destination based multicast may be used. An
additional side feature exists: Wide-Area Viewers can
make use of the low fidelity information with no
further network loading.

IMPLEMENTATION CONSIDERATIONS

Mapping Alternate Filtering Schemes to
the Filter Space API

It has been proposed within the AMG that the
filter space API is flexible enough to support
alternate filtering mechanisms without significant
loss of performance. The suggested approach is based
on exploiting knowledge of the RTI’s internal
implementation of filter space to obtain direct control
over multicast allocation. The approach is
summarized below.

Assume a federation defines a one-dimensional
filter space, and assigns a range of 1..10 to that
dimension. Using the grid feature of the API, the
federation may break the filter space into 10 cells.
Given that the current implementation of the RTI
assigns filter space cells on a one to one basis to
multicast groups, the federation may now use
addressing mechanisms (i.e. filters) other that filter
space and be able to route the data onto multicast
groups via the RTI (see also: Implementation of
Routing Options, below).

The above approach would seem to provide a
prima facie solution to supporting other filtering
techniques via the filter space API. However, two
significant drawbacks exist.

The first drawback is that the solution is entirely
dependent on the RTI’s internal implementation of

filter space. If the RTI is to be considered a ‘black-
box’ component which provides a given set of
functions via any number of internal implementation
options, this approach is considered inadequate. If
the federation has access to, and control over, the
RTI’s internal implementation, then this approach,
while semantically poor, may be deemed reliablevi.
Note that the proposed ‘commercialization’ of the
RTI (with multiple RTI implementations and
vendors), renders the assumption of internal
implementation knowledge potentially unreliable, and
may reduce the ability of federations with specialized
filters to use multiple RTI implementations.

The second drawback concerns the loss of
semantic content via using the API in a completely
different manner than it was designed to support. In
particular, the functionality performed by the RTI
(routing) does not match the functionality defined by
the API (filter space). While this mis-match is not a
‘show-stopper’, such distortions of an API are a cause
for concern. To use an extreme example, one could
argue that the basic object-based subscription provided
by the API is sufficient for federation-tailored routing.
A federation could simply define a set of classes
which conceptually describe multicast groups, thus
controlling routing by subscribing and unsubscribing
to various objects. Few would argue that such a
scheme would be a poor use of the object
subscription mechanism, yet it would function.

Also of potential concern is the ability of the
federation to implement hierarchies of filters within
the network structure. As outlined earlier, there may
be substantial improvements possible from
implementing filters (possibly of different types) at
various points in the network hierarchy, most notably
at the LAN/WAN boundaries. While such filters may
be created internal to the RTI, a federation will have
little to no control over the types and locations of
filters without the ability to modify the RTI.

Implementation of Routing Options

Internal to the RTI : While filter space most
naturally maps to a data-base use of multicast, it is
certainly possible to implement any of the basic
multicast routing algorithms within the RTI. It is
likely that the optimal routing technique will vary
across federations, with considerable overlap between
federations which exchange data in similar patterns.

Via the Filter Space API: If the one-dimensional
filter space approach outlined above is used, then all
multicast routing approaches may be built above the

vi Also note that any internal optimizations done

dynamically by the RTI to improve multicast
performance are unlikely to increase performance, as
their optimization heuristics must, by definition, be
based on the characteristics of filter space. Given that
alternate addressing schemes and/or routing
approaches are mapped to the filter space API, the
characteristics are likely to be substantially different --
in this case, internal RTI attempts to dynamically
improve multicast performance may well slow down
the system.

RTI, if the RTI implementation is a ‘glass-box’ --
i.e. the user is aware of how the component is built,
but may not modify it.

ANALYSIS CONCLUSIONS

While the majority of the RTI’s functional
specifications are sufficiently defined and tested to be
included in the DoD-wide HLA standard, some risk
remains with the Data Distribution Management
(DDM). The proposed scalability approach to DDM,
filter space, appears sufficient to support data-based
filtering schemes across a range of federations.
Further, the use of other filtering schemes layered on
top of the filter space API is possible. However,
significant loss of semantic clarity and potential
performance losses exist if such layering occurs.
Federations must also have implementation-level
knowledge of the RTI’s internal routing algorithms.
Given that little experimental data exists to support
one filtering scheme over another, a more generic
interface to DDM than filter space would be preferable
from an architectural design perspective. However,
from a use perspective, there is considerable value to
having a common approach to filtering across
federations. From that perspective, and that the only
standardization approach available at the moment is
the HLA, filter space may be suitable for the initial
RTI specification.

DDM risk is considerably lessened if two
assumptions apply:

• Federations have the ability to ‘tailor’ the
internal implementation of the RTI to better
meet their purpose (i.e. the RTI is a component
under the federation’s control, and not a black-
box of functionality). In particular, can the
RTI’s internal implementation of routing be
modified.vii

• The RTI API is flexible -- i.e. a more generic
interface may be added at a later date if
experiments with other filtering schemes show
promise.

ACKNOWLEDGMENTS

The author would like to thank Ed Powell,
Darrin West, Jesse Aronson, Mike Mazurek, Glenn
Tarbox, Jim Watson, and Tim Eller for many
profitable discussions about the role of multicast and
filtering in distributed simulation. Many of the ideas
discussed in this paper were the result of collaboration
between the author and these individuals and their
contributions are gratefully acknowledged.

The definition of filtering techniques and
participation in the AMG filter working group was
primarily accomplished under the STOW SEID
program.

Further thanks are due to Jim Cantor for keeping
the author on travel long enough to write this paper,

vii As stated earlier, allowing tailoring may

introduce standardization and compliance risks.

and to USAir, whose flights average one battery
charge.

REFERENCES

Calvin, J., J. Seeger, G. Troxel, and D. Van Hook.
1995. STOW Realtime Information Transfer and
Networking System Architecture. In Proceedings
of the 12th DIS Workshop.

Chaiken, D., J. Kubiatowicz, and A. Agarwal. 1991.
LimitLESS Directories: A Scalable Cache
Coherence Scheme. Communications of the
ACM, Reference # 0-89791-380-9/91/0003-
0224.

Powell, E. “The Use Of Multicast and Interest
Management in DIS and HLA Applications,”
Proceedings of the 15th DIS Workshop.

Powell, E. et al., “Joint Precision Strike
Demonstration (JPSD) Simulation Architecture,”
Proceedings of the 14th DIS Workshop, IST-CR-
96-02, 3/96.

Mellon, L., “Hierarchical Filtering in the STOW
System,” Proceedings of the 14th DIS
Workshop, IST-CR-96-02, 3/96.

Steinman, J., “Declaration Management in HLA”.
Draft Version 0.1.

AUTHOR BIOGRAPHY

LARRY MELLON is a senior computer scientist
and branch manager with Science Applications
International Corporation (SAIC). He received his
B.Sc. degree from the University of Calgary. His
research interests include parallel simulation and
distributed systems. He is a lead architect for the
ARPA-funded Synthetic Theater of War (STOW
SEID) Program.

